Time Zones

Standard Time

(established for the United States in November 1883 and soon adopted by other countries
4 based on the position of the noon day sun, but only at selected meridia ns of longitude rather than at each specific site
(t) the earth rotates 15° in one hour, the standard time zones differ by exactly one hour intervals
(there are 24 time zones $\left(24 \times 15^{\circ}=360^{\circ}\right)$
(the meridians used as the centers of their respective time zones are multiplies of $15{ }^{\circ}$
(the Greenwich meridian is the reference for other time zones; times based on this system is called GMT (Greenwich Mean Time)
\& considerable liberty has been taken in placement of the time zone boundaries, generally they are drawn along state lines
(going east every 15° is one hour later
(going west every 15° is one hour earlier

Intemational Date Line

(unique line in the world standard time system: 180° meridian
4 crossing the Intemational date line the time changes by 24 hours
4 The time change is opposite to all those established by the 24 -hrtime zone boundaries

- Going East to West $\rightarrow 1$ day later
- Going West to East $\rightarrow 1$ day earlier

4 The Intemational Date Line counterbalancesthe changes in time produced by the time zone boundaries.

If there was no date line with standard time If you traveled the world in a westward direction in a 24 -hr period, you would cross 24 time zones and the time would be set back by 24 -hrs. Thus when you a rived back at you starting point it would be the same time as when you left.

Problems

1. If it is 10 p.m., Sunday at $135^{\circ} \mathrm{W}$, what is the time and the day at that same instant at $15^{\circ} \mathrm{W}$?

Analysis:

Going $135^{\circ} \mathrm{W}$ to $15^{\circ} \mathrm{W}$ are we traveling east or west?
Time: \qquad day: \qquad
2. If it 9 a.m., Tuesday, at $105^{\circ} \mathrm{E}$ what is the time and the day at that same instant at $150^{\circ} \mathrm{W}$?

Analysis:

Going $105^{\circ} \mathrm{W}$ to $150^{\circ} \mathrm{W}$ are we traveling east or west?
Time: \qquad day: \qquad

Note: Since the two given longitudes are in different longitudinal hemispheres, their total longitudinal separation is calculated by adding the two numbers.

Figure 2.10 The global system of time zones.
*R.C. Sc ott, "Physic al Geogra phy", West Publishing Co., 1989, pg. 21.

