Rules for assigning oxidation numbers to atoms:

Rule	Examples
Neutral substances that contain atoms of only one element have an oxidation number of zero.	Na, He, Cu, Au, H ₂ , Cl ₂
Monatomic ions have oxidation states equal to the charge on the ion.	Ca ²⁺ , S ²⁻
Oxygen may be 0, -1, -2, or -½	O ₂ - oxidation is zero H ₂ O, SO ₂ , CaO - oxidation is -2 (common) H ₂ O ₂ - oxidation is -1 in peroxide KO ₂ - oxidation is -½ in this superoxide
Group IA - alkali metals have oxidation states of either zero or +1	Li metal - oxidation of Li = 0 NaCl - oxidation of Na is +1
Group IIA - alkaline earth metals have oxidation states of either zero or +2	Ca metal - oxidation of Ca = 0 CaCl ₂ - oxidation of Ca is +2
Group VIIA - halogens a. zero when diatomic b1 when in ionic compounds c. Cl, Br, and I may be positive	Cl ₂ , Br ₂ have oxidation states of zero. NaCl, CuBr ₂ , NF ₃ - halogens have oxidation states of -1 NaClO ₃ - chlorine has an oxidation state of +5
Hydrogen can be +1, 0, -1	Hydrogen is zero in the diatomic molecule, +1 in most compounds, but it is -1 in hydrides such as NaH - sodium hydride.

The sum of all the oxidation numbers in a compound must equal the charge on the compound.

Charges are written with the number first and then the sign of the charge: 2+, 3-, etc. Oxidation states are written with the sign first and then the number: +2, +5, -1, etc.