Max Planck theorized that energy was transferred in chunks known as quanta, equal to $h v$. The variable h is a constant equal to $6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and the variable v represents the frequency in $1 / \mathrm{s}$. This equation allows us to calculate the energy of photons, given their frequency. If the wavelength is given, the energy can be determined by first using the wave equation ($\mathrm{c}=\lambda \times v$) to find the
useful equations

$$
\begin{array}{ll}
\mathrm{c}=\lambda \times v & \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\mathrm{E}=\mathrm{h} \times v & \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
1 \mathrm{~m}=1 \times 10^{9} \mathrm{~nm} & 1 \mathrm{~kJ}=1000 \mathrm{~J}
\end{array}
$$ frequency, then using Planck's equation to calculate energy.

Problem-Solving Strategy

Known

Frequency (v)
Wavelength $(\lambda) \quad\left[v=\frac{c}{\lambda}>\right.$
Energy (E)

Frequency (v)
Frequency (v)

Unknown
Energy (E)
Energy (E)
Wavelength (λ)

example

Light with a wavelength of 525 nm is green. Calculate the energy in joules for a green light photon.

- find the frequency: $c=\lambda \times v \quad v=\frac{c}{\lambda} \quad v=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{525 \mathrm{~nm} \times \frac{1 \mathrm{~m}}{1 \times 10^{9} \mathrm{~nm}}} \quad v=5.71 \times 10^{14} 1 / \mathrm{s}$
- find the energy: $\quad E=h \times v \quad E=\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(5.71 \times 10^{14} \mathrm{l} / \mathrm{s}\right) \quad E=3.78 \times 10^{-19} \mathrm{~J} /$ photon

Use the equations above to answer the following questions.

1. Ultraviolet radiation has a frequency of $6.8 \times 10^{15} \mathrm{1} / \mathrm{s}$. Calculate the energy, in joules, of the photon.
2. Find the energy, in joules per photon, of microwave radiation with a frequency of $7.91 \times 10^{10} 1 / \mathrm{s}$.
3. A sodium vapor lamp emits light photons with a wavelength of $5.89 \times 10^{-7} \mathrm{~m}$. What is the energy of these photons?
4. One of the electron transitions in a hydrogen atom produces infrared light with a wavelength of $7.464 \times 10^{-6} \mathrm{~m}$. What amount of energy causes this transition?
5. Find the energy in kJ for an x -ray photon with a frequency of $2.4 \times 10^{18} 1 / \mathrm{s}$.
6. A ruby laser produces red light that has a wavelength of 500 nm . Calculate its energy in joules.
7. What is the frequency of UV light that has an energy of $2.39 \times 10^{-18} \mathrm{~J}$?
8. What is the wavelength and frequency of photons with an energy of $1.4 \times 10^{-21} \mathrm{~J}$?
