An acid is a substance that creates the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, in solution. The concentration of hydronium is represented by $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and this value determines the pH of a solution. The pH is calculated by taking the logarithm of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and changing the sign: $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. A neutral solution has a pH of 7 , while acidic solutions have pH values less than 7 . Basic or alkaline solutions have pH values greater than 7 .

pH Scale				
pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$[\mathrm{OH}]$	pOH	
0	1×10^{0}	1×10^{-14}	14	\%
2	1×10^{-2}	1×10^{-12}	12	\%
4	1×10^{-4}	1×10^{-10}	10	2
6	1×10^{-6}	1×10^{-8}	8	
7	1×10^{-7}	1×10^{-7}	7	neutral
8	1×10^{-8}	1×10^{-6}	6	
10	1×10^{-10}	1×10^{-4}	4	知
12	1×10^{-12}	1×10^{-2}	2	0
14	1×10^{-14}	1×10^{0}	0	

USEFUL EQUATIONS
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}+\mathrm{pOH}=14.00$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

Examples

Find the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.6 \times 10^{-9} \mathrm{M}$.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=-\log \left(8.6 \times 10^{-9}\right) \\
& \mathrm{pH}=-(-8.07)=8.07
\end{aligned}
$$

Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution with a $\mathrm{pH}=9.27$.

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
-\mathrm{pH} & =\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

antilog $-(9.27)=$ antilog $\operatorname{tgg}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
5.4 \times 10^{-10} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Find the pOH of a solution with $\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-2} \mathrm{M}$.

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left(1.3 \times 10^{-2}\right) \\
& \mathrm{pOH}=-(-1.89)=1.89
\end{aligned}
$$

Find the pOH of a solution with $\mathrm{pH}=3.21$.

$$
\begin{aligned}
& \mathrm{pOH}=14.00-\mathrm{pH} \\
& \mathrm{pOH}=14.00-3.21=10.79
\end{aligned}
$$

Solve the following problems. Show all work.

1. Find the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.3 \times 10^{-4} \mathrm{M}$. Is the solution acidic or basic?
2. Find the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.42 \times 10^{-11} M$. Is the solution acidic or basic?
3. Vinegar (acetic acid) has a pH of about 2.4. Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for vinegar. Is it acidic or basic?
4. Baking soda has a pH of about 8.15 . Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for a baking soda solution. Is it acidic or basic?
5. Find the pOH for a solution with $\left[\mathrm{OH}^{-}\right]=5.5 \times 10^{-3} \mathrm{M}$. Is the solution acidic or basic?
6. Find the pOH for a solution with $\left[\mathrm{OH}^{-}\right]=3.71 \times 10^{-6} \mathrm{M}$. Is the solution acidic or basic?
7. A 0.05 M solution of NaOH contains $0.05 \mathrm{M} \mathrm{OH}^{-}$. Find the pOH of this solution and convert to pH .
8. In a blood sample $\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-7} \mathrm{M}$. Find the pOH of blood and convert to pH .
9. The pOH of household ammonia is 2.5. Determine the $\left[\mathrm{OH}^{-}\right]$in ammonia. Is the solution acidic or basic?
10. Lemon juice has a pH of about 3.6. Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in lemon juice. Is it acidic or basic?
© John Erickson, 2005
