Ν	ar	ne
---	----	----

The **molar enthalpy of reaction** (ΔH_{rxn}) is the amount of heat transferred during a reaction. It is reported in kilojoules per mole of reactant. A reaction that produces heat is **exothermic** and has a negative ΔH_{rxn} . A reaction that absorbs heat is **endothermic** and has a positive ΔH_{rxn} .

ow much heat is produced when 85 g of sul	fur reacts according to the reaction below?	
	$2S + 3O_2 \rightarrow 2SO_3 \Delta H = -792 \text{ kJ}$	
- the ΔH value given in the equation is the	e amount of heat transferred when 2 moles of sulfur and 3 moles of oxygen reac	
- write the 'given' and 'unknown' units:	$\frac{85 \text{ g S}}{1000} \times 1000000000000000000000000000000000000$	
C11 · C ·	25 a S 1 mal S 702 kI	
- fill in factors:	$\frac{65 \text{ g S}}{1} \times \frac{11001 \text{ S}}{22.06 \text{ g S}} \times \frac{-792 \text{ KJ}}{2 \text{ mol S}} = \text{ kJ}$	
	1 52.00 g S 2 moi S	
- solve:	85≥S 1m∂S -792 kJ	
50170.	x = -1050 kJ	

Answer the following questions. Show all work and report answers with units.

 How much heat will be released when 6.44 g of sulfur reacts with excess O₂ according to the following equation?

$$2 \text{ S} + 3\text{O}_2 \rightarrow 2\text{SO}_3 \qquad \varDelta H = -791.4 \text{ kJ}$$

2. How much heat will be released when 4.72 g of carbon reacts with excess O_2 according to the following equation?

$$C + O_2 \rightarrow CO_2$$
 $\Delta H = -393.5 \text{ kJ}$

3. How much heat will be absorbed when 38.2 g of bromine reacts with excess H₂ according to the following equation?

$$H_2 + Br_2 \rightarrow 2HBr$$
 $\Delta H = +72.80 \text{ kJ}$

4. How much heat will be released when 1.48 g of chlorine reacts with excess phosphorus according to the following equation.

$$2P + 5Cl_2 \rightarrow 2PCl_5$$
 $\Delta H = -886 \text{ kJ}$

5. What mass of propane, C₃H₈ must be burned in order to produce 76,000 kJ of energy?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$
 $\Delta H = -2200 \text{ kJ}$

6. How much heat will be absorbed when 13.7 g of nitrogen reacts with excess O₂ according to the following equation?

$$N_2 + O_2 \rightarrow 2NO$$
 $\Delta H = +180 \text{ kJ}$

7. What mass of iron must react to produce 3600 kJ of energy?

 $3\text{Fe} + 2\text{O}_2 \rightarrow \text{Fe}_3\text{O}_4 \qquad \Delta H = -1120 \text{ kJ}$

8. How much heat will be released when 12.0 g of H_2 reacts with 76.0 g of O_2 according to the following equation? (when one reactant runs out the reaction stops)

 $2H_2 + O_2 \rightarrow 2H_2O$ $\Delta H = -571.6 \text{ kJ}$