The molar enthalpy of reaction $\left(\Delta H_{r x n}\right)$ is the amount of heat transferred during a reaction. It is reported in kilojoules per mole of reactant. A reaction that produces heat is exothermic and has a negative $\Delta H_{r x n}$. A reaction that absorbs heat is endothermic and has a positive $\Delta H_{r x n}$.

Example

How much heat is produced when 85 g of sulfur reacts according to the reaction below?

$$
2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \quad \Delta \mathrm{H}=-792 \mathrm{~kJ}
$$

- the ΔH value given in the equation is the amount of heat transferred when 2 moles of sulfur and $\mathbf{3}$ moles of oxygen react.
- write the 'given' and 'unknown' units:

- fill in factors:

$$
\frac{85 \mathrm{~g} \mathrm{~S}}{1} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.06 \mathrm{~g} \mathrm{~S}} \times \frac{-792 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{~S}}=
$$

- solve:

$$
\frac{85 \mathrm{gS}}{1} \times \frac{1 \mathrm{mols}}{32.06 \mathrm{gS}} \times \frac{-792 \mathrm{~kJ}}{2 \mathrm{molS}}=-1050 \mathrm{~kJ}
$$

Answer the following questions. Show all work and report answers with units.

1. How much heat will be released when 6.44 g of sulfur reacts with excess O_{2} according to the following equation?

$$
2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \quad \Delta H=-791.4 \mathrm{~kJ}
$$

2. How much heat will be released when 4.72 g of carbon reacts with excess O_{2} according to the following equation?

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta H=-393.5 \mathrm{~kJ}
$$

3. How much heat will be absorbed when 38.2 g of bromine reacts with excess H_{2} according to the following equation?

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \quad \Delta H=+72.80 \mathrm{~kJ}
$$

4. How much heat will be released when 1.48 g of chlorine reacts with excess phosphorus according to the following equation.

$$
2 \mathrm{P}+5 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{PCl}_{5} \quad \Delta H=-886 \mathrm{~kJ}
$$

5. What mass of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ must be burned in order to produce $76,000 \mathrm{~kJ}$ of energy?
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \Delta H=-2200 \mathrm{~kJ}$
6. How much heat will be absorbed when 13.7 g of nitrogen reacts with excess O_{2} according to the following equation?

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \quad \Delta H=+180 \mathrm{~kJ}
$$

7. What mass of iron must react to produce 3600 kJ of energy?

$$
3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4} \quad \Delta H=-1120 \mathrm{~kJ}
$$

8. How much heat will be released when 12.0 g of H_{2} reacts with 76.0 g of O_{2} according to the following equation? (when one reactant runs out the reaction stops)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \Delta H=-571.6 \mathrm{~kJ}
$$

