
Solution Stoichiometry Chem Worksheet 15-6

The **molarity** of a solution is a ratio of the moles of solute per liters of solution. The units for molarity are written as mol/L or *M*. This measurement is used to perform stoichiometric calculations. The strategy used for solving these solution stoichiometry problems is to set up the problem so that the units cancel.

$$\frac{\text{USEFUL EQUATIONS}}{\text{molarity}} = \frac{\text{mol solute}}{\text{L solution}} \qquad 1 \text{ L} = 1000 \text{ mL}$$

When the volume of a solution is multiplied by the molarity of a solution the resulting units are moles. A balanced equation allows us to convert from moles of a known substance to moles of an unknown. Finally, the moles of an unknown substance can be converted into grams, liters of solution, molarity, or other units.

How many grams of solid calcium hydroxide, $Ca(OH)_2$, are required to react with 350 mL of 0.40 M HCl? __HCl + __Ca(OH)_2 \rightarrow __CaCl_2 + __H2O - balance the equation: __2HCl + __Ca(OH)_2 \rightarrow __CaCl_2 + _2H_2O - convert mL to L: $\frac{350 \text{ mL} \text{ HCl}}{1} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.350 \text{ L HCl}$ - write the 'given' and 'unknown' units: $\frac{350 \text{ L HCl}}{1} \times \frac{1}{1000 \text{ m}} \times \frac{1}{$

Answer the following questions. Show all work and report answers with units.

- How many grams of aluminum are required to react with 35 mL of 2.0 M hydrochloric acid, HCl?
 HCl + __ Al → __ AlCl₃ + __ H₂
- 2. How many grams of sodium can be reacted with 750 mL of a 6.0 *M* solution of sulfuric acid, H₂SO₄?
 - $_{-}$ Na + $_{-}$ H₂SO₄ \rightarrow $_{-}$ Na₂SO₄ + $_{-}$ H₂
- 3. If 45 mL of a 1.5 *M* AgNO₃ is added to KCl how many grams of AgCl can be formed?

 __ AgNO₃ + __ KCl → __ AgCl + __ KNO₃
- 4. How many liters of a 0.75 M solution of Ca(NO₃)₂ will be required to react with 148 g of Na₂CO₃?
 __Ca(NO₃)₂ + __Na₂CO₃ → __CaCO₃ + __NaNO₃

- 5. How many liters of a 3.0 *M* H₃PO₄ solution are required to react with 4.5 g of zinc?

 ___ H₃PO₄ + ___ Zn → ___ Zn₃(PO₄)₂ + ___ H₂
- 6. How many milliliters of $0.10 M \text{ Pb(NO}_3)_2$ are required to react with 75 mL of 0.20 M NaI? $Pb(NO_3)_2 + NaI \rightarrow PbI_2 + NaNO_3$
- 7. How many grams of solid BaSO₄ will form when Na₂SO₄ reacts with 25 mL of 0.50 M Ba(NO₃)₂?

 __ Ba(NO₃)₂ + __ Na₂SO₄ \rightarrow __ BaSO₄ + __ NaNO₃
- 8. If 525 mL of 0.80 *M* HCl solution is neutralized with 315 mL of Sr(OH)₂ solution what is the molarity of the Sr(OH)₂?

$$_$$
 HCl + $_$ Sr(OH)₂ \rightarrow $_$ SrCl₂ + $_$ H₂O

WS15-6SolutionStoich