A solution can be made less concentrated in a process called dilution. This is


Dilute Solution
$\mathrm{M}_{1} \times \mathrm{V}_{1}=\mathrm{mol}$
$\left(3 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(2 \mathrm{~L})=6 \mathrm{~mol}$
accomplished by adding more solvent. This process decreases the molarity of the solution - the moles of solute in a dilute solution remain constant while the volume of solvent is increased.

Let's assume that you have 0.500 L of a hydrochloric acid

## USEFUL EQUATIONS

$$
M_{1} \times V_{1}=M_{2} \times V_{2} \quad \text { molarity }=\frac{\text { mol solute }}{\text { L solution }}
$$

$$
1 \mathrm{~L}=1000 \mathrm{~mL}
$$ solution with a concentration of 12 M . This sample contains 6 moles of HCl . When this solution is placed in a larger flask and water is added until the volume reaches 2.00 L a more dilute solution is created. There are still 6 moles of HCl in the solution, but the new volume is 2.00 L . So, the concentration is now 6 moles $/ 2.00$ liters, or $3 M$. A simple formula used when diluting solutions is molarity ${ }_{1} \times$ volume $_{1}$ $=$ molarity $_{2} \times$ volume $_{2}$.

## example

Calculate the molarity of the solution that forms when 10 mL of a 6.0 M solution is diluted to a volume of 250 mL .

$$
\begin{array}{cl}
\text { - determine variables: } & M_{1}=6.0 \mathrm{M}
\end{array} V_{1}=10.0 \mathrm{~mL} \quad M_{2}=? \quad V_{2}=250 \mathrm{~mL},
$$

## Solve the following dilution problems.

1. A stock solution of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ has a concentration of 1.00 M . The volume of this solution is 50 mL . What volume of a 0.25 M solution could be made from the stock solution?
2. 2.00 mL of a 0.75 M solution of potassium permanganate, $\mathrm{K}_{2} \mathrm{MnO}_{4}$ solution is used to make a 500.00 mL solution. What is the concentration of the new solution?
3. A hydrochloric acid solution, HCl has a concentration of 12.1 M . A 41.2 mL sample is used to make a more dilute solution. If the new solution has a concentration of 0.5 M , determine the volume of the solution.
4. A 0.50 M solution of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is used to create a more dilute solution. If 250 mL of the concentrated solution is diluted to a volume of 2.5 L , determine the concentration of the new solution.
5. A stock solution of potassium nitrate, $\mathrm{KNO}_{3}$ has a concentration of 0.25 M . What volume of dilute potassium nitrate $(0.10 \mathrm{M})$ can be formed with 80.0 mL of the concentrated solution?
6. What volume of concentrated nitric acid, $\mathrm{HNO}_{3}(15.8 \mathrm{M})$ should be added to water to form 500.0 mL of a 3.0 M nitric acid solution?
7. A sample of 7.0 mL of concentrated sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used to make 250 . mL of a 0.50 M sulfuric acid solution. What was the initial concentration of the sulfuric acid?
8. An instructor needs to make 400 mL of a silver nitrate solution that has a concentration of 0.01 M . How many milliliters of the 0.5 M solution should be used?
