 grams can be converted to moles using the molar mass. Also remember that the volumes in milliliters can be converted to liters (see table to the right). with a small amount of solute is called dilute.

Solutions are comprised of two parts - the solute and the solvent. The solute is the substance that gets dissolved, and is present in a smaller amount. The solvent is the substance that does the dissolving and is present in a greater amount. A solution that has a lot of solute per solvent is described as concentrated, while a solution

The concentration of a solution is commonly given a number value by dividing the moles of the solute by the liters of the solution. This measurement is known as the molarity of a solution and it has units of $\mathrm{mol} / \mathrm{L}$ or M. To find the molarity of a solution, you must know the moles of solute and the liters of solution. Recall the

example

What is the molarity of a solution that contains $7.8 \mathrm{~g} \mathrm{of} \mathrm{Al}(\mathrm{OH})_{3}$ dissolved in 250.0 mL of water.

$$
\begin{array}{ll}
\text { - convert grams of solute to moles: } & \frac{7.8 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}}{1} \times \frac{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}{78.0 \mathrm{gAl}(\mathrm{OH})_{3}}=0.10 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3} \\
\text { - convert milliliters of solution to liters: } & \frac{250.0 \mathrm{~mL}}{1} \times \frac{1 \mathrm{~L}}{1000 \mathrm{hL}}=0.250 \mathrm{~L} \\
\text { - divide the moles solute by the liters solution: } & \frac{0.10 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}{0.250 \mathrm{~L} \text { solution }}=0.40 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}
\end{array}
$$

Answer the following questions. Show all work and report answers with units.

1. A solution has a volume of 2500 mL . How many liters is this?
2. Convert 50 g of calcium carbonate, CaCO_{3}, into moles.
3. A solution contains 0.42 moles of solute in 0.75 L . Calculate the molarity of the solution.
4. What is the molarity of a solution that contains 15.0 g of NaOH per 500.0 mL of solution?
5. A 250.0 mL solution contains 4.6 g of copper (II) chloride, CuCl_{2}. Find the molarity of this solution.
6. How many moles of hydrochloric acid, HCl , are present in 0.085 L of a 3.0 M solution?
7. A 37.5 mL solution contains 0.181 g of potassium chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$. What is the molarity?
8. What is the molarity of a solution that contains 0.85 g of ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$, dissolved in a solution with volume 100.0 mL ?
9. Calculate the mass of lead (II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, necessary to make 50.0 mL of a 0.100 M solution.
10. What volume of a $0.35 M$ solution of sodium chloride could be formed with 25 g of NaCl ?
