The ideal gas law is an equation that relates the volume, temperature, pressure and amount of gas particles to a constant. The ideal gas constant is abbreviated with the variable R and has the value of $0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{K}$. The ideal gas law can be used when three of the four gas variables are known. When using this equation it is important that the units for pressure are atmospheres (atm), volume is in liters (L), and temperature is converted to kelvins (K). The amount of gas is measured in units called moles (mol).

USEFUL EQUATIONS	
$P V=n R T$	$1.00 \mathrm{~atm}=101300 \mathrm{~Pa}$
$R=0.0821$	$\frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}}$

Unknown Equation Known Variables

pressure	P	$=\frac{n R T}{V}$	amount, temp., volume
volume	V	$=\frac{n R T}{P}$	amount, temp., pressure
temperature	T	$=\frac{P V}{n R}$	pressure, volume, amount

amount $n=\frac{P V}{R T} \quad$ pressure, volume, temp.

example

The pressure exerted by 2.8 moles of argon gas at a temperature of $85^{\circ} \mathrm{C}$ is 420 torr. What is the volume of this sample?

$$
\begin{array}{ll}
\text { - list the variables: } & P=420 \mathrm{torr} \quad V=? \quad n=2.8 \mathrm{~mol} \quad R=0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad T=85^{\circ} \mathrm{C} \\
\text { - convert the variables: } & \frac{420 \mathrm{tarr}}{1} \times \frac{1 \mathrm{~atm}}{760 \mathrm{taxc}}=0.553 \mathrm{~atm} \quad T=85^{\circ} \mathrm{C}+273=358 \mathrm{~K} \\
\text { - substitute into the equation: } & V=\frac{n R T}{P} \quad V=\frac{(2.8 \mathrm{mal})\left(0.08206 \frac{\mathrm{ax} \cdot \mathrm{~L}}{\mathrm{mmo} \cdot \mathrm{~K}}\right)(358 \mathrm{~K})}{0.553 \mathrm{akn}}=82 \mathrm{~L}
\end{array}
$$

Solve the following problems.

1. A tank contains 115 moles of neon gas. It has a pressure of 57 atm at a temperature of $45^{\circ} \mathrm{C}$. Calculate the volume of the tank.
2. A scuba tank has a pressure of 195 atm at a temperature of $10^{\circ} \mathrm{C}$. The volume of the tank is 350 L . How many moles of air are in the tank?
3. A helium-filled balloon has a volume of 208 L and it contains 9.95 moles of gas. If the pressure of the balloon is 1.26 atm , determine the temperature in Celsius degrees.
4. A tank of oxygen has a volume of 1650 L . The temperature of the gas inside is $35^{\circ} \mathrm{C}$. If there are 9750 moles of oxygen in the tank what is the pressure in PSI?
5. A canister of acetylene has a volume of 42 L . The temperature of the acetylene is 305 K and the pressure is 780 torr. Determine the amount (moles) of gas in the canister.
6. Calculate the volume of a CO_{2} cartridge that has a pressure of 850 PSI at a temperature of $21^{\circ} \mathrm{C}$. The cartridge contains 0.273 mol of CO_{2}.
7. A tank contains 2500 L of argon gas. The pressure is 13790 kPa and the temperature is $25^{\circ} \mathrm{C}$. How many moles of argon are in the tank?
