Boyle's law shows that the pressure and volume of a gas are inversely related. Charles' law shows that the kelvin temperature and volume of a gas are directly related. These two relationships can be combined into a single equation known as the combined gas law. The formula for the combined gas law is: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$ This equation could be memorized instead of memorizing Boyle's law, Charles' law, and

Law

Boyle's Law

Charles' Law

Guy-Lussac's Law

Equation

$$
\frac{P_{1} V_{1}}{X_{2}}=\frac{P_{2} V_{2}}{X_{2}}
$$

Constant Variable

temperature

$$
\frac{\mathrm{R}_{2} V_{1}}{T_{1}}=\frac{\mathrm{R}_{2} V_{2}}{T_{2}} \quad \text { pressure }
$$

volume
-Guy-Lussac's law. Each of these other gas laws can be derived from the combined gas law by canceling out the variable that does not change.

example

A 28 L sample of gas has a pressure of 25 psi when the temperature is $45^{\circ} \mathrm{C}$. What is the volume of the gas if the pressure is increased to 175 psi and the temperature is increased to $320^{\circ} \mathrm{C}$?

- list the variables:

$$
\begin{aligned}
& V_{1}=28 \mathrm{~L} \\
& V_{2}=?
\end{aligned}
$$

$$
P_{l}=25 \mathrm{psi}
$$

$$
P_{2}=175 \mathrm{psi}
$$

$$
T_{I}=45^{\circ} \mathrm{C}=313 \mathrm{~K}
$$

$$
T_{2}=320^{\circ} \mathrm{C}=593 \mathrm{~K}
$$

- substitute into the equation: $\quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \frac{(25 \mathrm{psi})(28 \mathrm{~L})}{(313 \mathrm{~K})}=\frac{(175 \mathrm{psi})\left(V_{2}\right)}{(593 \mathrm{~K})}$
- cross-multiply and simplify:

$$
(25 \mathrm{psi})(28 \mathrm{~L})(593 \mathrm{~K})=(175 \mathrm{psi})\left(V_{2}\right)(313 \mathrm{~K})
$$

$$
\frac{(25 \mathrm{psi})(28 \mathrm{~L})(593 \mathrm{~K})}{(175 \mathrm{psi})(313 \mathrm{~K})}=\frac{(175 \mathrm{psi})\left(V_{2}\right)(3 \mathrm{~K} K)}{(175 \mathrm{psi})(3 \mathrm{KK})}
$$

- solve:

$$
V_{2}=7.6 \mathrm{~L}
$$

Solve the following problems.

1. A canister containing air has a volume of $85 \mathrm{~cm}^{3}$ and a pressure of 1.45 atm when the temperature is 310 K . What is the pressure when the volume is increased to $180 \mathrm{~cm}^{3}$ and the temperature is reduced to 280 K ?
2. Air is transferred from a 75 L tank where the pressure is 125 psi and the temperature is 288 K to a tire with a volume of 6.1 L and a pressure of 25 psi . What is the new temperature?
3. A helium balloon at $28^{\circ} \mathrm{C}$ has a volume of 1.8 L and a pressure of 102 kPa . What is the volume of the balloon when is rises into the atmosphere where the pressure is 85 kPa and the temperature is $4^{\circ} \mathrm{C}$?
4. The pressure of a piston with a volume of $650 \mathrm{~cm}^{3}$ and $85^{\circ} \mathrm{C}$ is 830 torr. It is heated to $350^{\circ} \mathrm{C}$ and compressed to a volume of $65 \mathrm{~cm}^{3}$. What is the new pressure?
5. A gas tank has a volume of $28.1 \mathrm{~m}^{3}$ and a pressure of 18.4 atm . The temperature of the gas is $32^{\circ} \mathrm{C}$. What is the Celsius temperature when the gas is put in an $11.2 \mathrm{~m}^{3}$ tank with a pressure of 22.7 atm ?
6. A metal can is able to withstand 3800 kPa before is bursts. The gas in the can has a volume of 235 mL and the pressure is 110 kPa at $25^{\circ} \mathrm{C}$. If the can is crushed to a volume of 8.5 mL and the temperature does not change will it burst? What is the pressure of the gas in the can?
