Jacques Charles made the observation the volume of a gas is directly proportional to the Kelvin temperature of the gas. If the Kelvin temperature is doubled, the volume also doubles. The equation for this relationship is $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$, where V represents volume and T represents temperature. The volume of a gas can be measured in liters, milliliters, cubic
 meters, or a variety of other units, but the temperature must be converted to kelvins. This relationship is only observed when the pressure remains constant.

\[

\]

example

A gas sample with a volume of 35 mL is heated from $25^{\circ} \mathrm{C}$ to $425^{\circ} \mathrm{C}$. What is the new volume? Assume a constant pressure.

- list the variables: $\quad V_{l}=35 \mathrm{~mL} \quad T_{1}=25^{\circ} \mathrm{C}=298 \mathrm{~K} \quad T_{2}=425^{\circ} \mathrm{C}=698 \mathrm{~K}$
- substitute into the equation: $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \frac{35 \mathrm{~mL}_{1}}{298 \mathrm{~K}}=\frac{V_{2}}{698 \mathrm{~K}}$
- solve by cross-multiplying: $\quad(35 \mathrm{ml}) \times(698 \mathrm{~K})=V_{2} \times(298 \mathrm{~K}) \quad \frac{(35 \mathrm{ml}) \times(698 \mathrm{~K})}{298 \mathrm{~K}}=\frac{V_{2} \times(298 \mathrm{~K})}{298 \mathrm{~K}} \quad V_{2}=82 \mathrm{~mL}$

Solve the following problems. Assume that the pressure does not change.

1. According to the graph, when the Kelvin temperature of a gas is doubled, what happens to the volume?
2. Using the graph, estimate the Kelvin temperature that the gas sample would reach a volume of 140 L .
3. A 240 mL sample of argon gas at 270 K is cooled until the volume is 180 mL . What is the new temperature?
4. A container of oxygen with a volume of 60 L is heated from 300 K to 400 K . What is the new volume?
5. When a piston with a volume of 35 mL is heated from $25^{\circ} \mathrm{C}$ to $323^{\circ} \mathrm{C}$ it expands. Assuming the pressure on the piston remains the same, determine the new volume of the cylinder.
6. A balloon with a volume of 5.3 L is taken from an indoor temperature of $24^{\circ} \mathrm{C}$ to the outdoors. The volume of the balloon outside is 4.9 L . Determine the Celsius temperature outside.
7. A movable piston contains a sample of 680 mL of neon gas with a temperature of $-5^{\circ} \mathrm{C}$. When the piston is heated the sample expands to a volume of 1.32 L . What is the new temperature of the neon gas?
8. A helium balloon has a volume of $2600 \mathrm{~cm}^{3}$ when the temperature is $21^{\circ} \mathrm{C}$. What is the volume of the balloon when it's placed in a freezer with a temperature of $-15^{\circ} \mathrm{C}$?
9. The Kelvin temperature of sample of $650 \mathrm{~cm}^{3}$ sample of ammonia gas is doubled. What is the new volume of the gas? Assume that the pressure stays constant.
10. A movable piston is allowed to cool from $392^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$. If the initial volume is 105 mL , what will be the new volume?
