\qquad

Answer the following questions. Show all work and use the correct number of significant digits.

1. Determine the percent yield for the reaction between 3.74 g of Na and excess O_{2} if 5.34 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$ is recovered.
2. Determine the percent yield for the reaction between 6.92 g of K and 4.28 g of O_{2} if 7.36 g of $\mathrm{K}_{2} \mathrm{O}$ is produced.
3. Determine the percent yield for the reaction between 82.4 g of Rb and 11.6 g of O_{2} if 39.7 g of $\mathrm{Rb}_{2} \mathrm{O}$ is produced.
4. Determine the percent yield for the reaction between 46.1 g of Cs and 13.4 g of O_{2} if 28.3 g of $\mathrm{Cs}_{2} \mathrm{O}$ is produced.
5. Determine the percent yield for the reaction between 28.1 g of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ and excess C if 17.3 g of Sb is recovered along with an unknown amount of CO.
6. Determine the percent yield for the reaction between 45.9 g of NaBr and excess chlorine gas to produce 12.8 g of NaCl and an unknown quantity of bromine gas.
7. Determine the percent yield for the reaction in which 15.8 g of NH_{3} and excess oxygen produce 21.8 g of NO gas and water.
8. Determine the percent yield for the reaction between 98.7 g of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and excess oxygen gas if 72.4 g of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ is recovered along with an unknown amount of sulfur dioxide.
9. Determine the percent yield for the reaction between 46.5 g of ZnS and 13.3 g of oxygen if 18.14 g of ZnO is recovered along with an unknown quantity of sulfur dioxide.
10. Determine the percent yield for the reaction between 15.0 g of N_{2} and 15.0 g of H_{2} if 10.5 g of NH_{3} is produced.
