© John Erickson, 2005

Net Ionic Equations Advanced Chem Worksheet 10-4

When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a **precipitation reaction**, and the solid produced in the reaction is known as the **precipitate**. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of

ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The **molecular equation** shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The **complete ionic equation** shows each of the compounds as separate ions if they are water soluble. Insoluble substances are not separated and these have the symbol (*s*) written next to them.

Notice that there are ions that are present on both sides of the reaction arrow – that is, they do not react. These ions are known as **spectator ions** and they are commonly eliminated from complete ionic equation by crossing them out. The remaining equation is known as the **net ionic equation**.

Solubility Rules

Rule 1 supercedes rule 2, rule 2 supercedes rule 3, etc.

- 1. **Nitrate** (NO_3^{-}) salts are soluble
- 2. Salts containing the **alkali metal** ions (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) and the **ammonium** ion (NH₄⁺) are soluble
- 3. Most **chloride**, **bromide**, and **iodide** salts are soluble. Notable exceptions are salts containing the ions Ag^+ , Pb^{2+} , Hg_2^{2+}
- 4. Most **sulfate** salts are soluble. Notable exceptions are BaSO₄, PbSO₄, Hg₂SO₄ and CaSO₄.
- 5. Most **hydroxide** salts are slightly soluble (insoluble). Exceptions include Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂.
- 6. Most sulfide (S^{2-}) , carbonate (CO_3^{2-}) , chromate (CrO_4^{2-}) , and **phosphate** (PO_4^{3-}) salts are insoluble.

 $2\text{KCl}(aq) + Pb(NO_3)_2(aq) \rightarrow 2\text{KNO}_3(aq) + PbCl_2(s)$

Molecular Equation:

Complete lonic Equation: $2K^{+}(aq) + 2CI^{-}(aq) + Pb^{2+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2K^{+}(aq) + 2NO_{3}^{-}(aq) + PbCl_{2}(s)$ $2K^{+}(aq) + 2CI^{-}(aq) + Pb^{2+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2K^{+}(aq) + 2NO_{3}^{-}(aq) + PbCl_{2}(s)$ Net lonic Equation: $2CI^{-}(aq) + Pb^{2+}(aq) \rightarrow PbCl_{2}(s)$

Write the <u>complete ionic equation</u> and cross out the spectator ions to give the <u>net ionic equation</u> for each of the reactions below. Include physical states for each species.

- 1. LiCl () + AgNO₃ () \rightarrow AgCl () + LiNO₃ ()
- 2. Na₂S () + CaCl₂ () \rightarrow 2NaCl () + CaS ()
- 3. $\operatorname{ZnCl}_2()$ + 2KOH() \rightarrow Zn(OH)₂() + 2KCl()
- 4. $Na_2CO_3() + Co(NO_3)_2() \rightarrow 2NaNO_3() + CoCO_3()$
- 5. 2NaOH() + $\text{MnBr}_2()$ \rightarrow 2NaBr() + $\text{Mn(OH)}_2()$
- 6. $\operatorname{FeCl}_3()$ + (NH₄)₃PO₄() \rightarrow 3NH₄Cl() + FePO₄()

Write the net ionic equation for each of the following reactions. List all spectator ions.

- 7. A solution of aluminum bromide, AlBr₃ reacts with a solution of sodium hydroxide, NaOH to form the precipitate aluminum hydroxide, Al(OH)₃.
- 8. Aqueous copper (II) nitrate, Cu(NO₃)₂ reacts with aqueous potassium carbonate, K₂CO₃ forming solid copper (II) carbonate, Cu(CO₃).
- 9. A solution of barium chloride, BaCl₂ reacts with a solution of magnesium sulfate, MgSO₄ to form the precipitate barium sulfate, BaSO₄.
- 10. Aqueous potassium sulfide, K₂S reacts with a solution of cadmium chloride, CdCl₂ to form solid cadmium sulfide, CdS.