## Heating/Cooling Curves

**A.** The following graph is a *heating curve* showing the *addition* of heat at a constant rate of 500.0 joules/minute to a 3.00 gram sample of ice at -20.0°C. The final temperature of the vapor is 140.0°C.



- 10. Phase changes that occur with an absorption of energy are \_\_\_\_\_\_thermic.
- 11. \_\_\_\_\_\_ (f\_\_\_\_\_\_) and \_\_\_\_\_\_ are endothermic phase changes.
- 12. During which segment could the heat of fusion be determined?
- 13. During which segment could the heat of vaporization be determined?
- 14. How long does it take to completely melt the sample at its melting point?
- 15. How long does it take to completely vaporize the sample at its boiling point?
- 16. During which segment is the substance entirely in the solid state?
- 17. During which segment is the substance entirely in the gas state?
- 18. If 25.0 grams of ice at 0°C are heated at a constant rate of 400.0 joules/minute, calculate the time needed to melt the sample completely. SHOW WORK.
- 19. If 25.0 grams of water at 100°C are heated at a constant rate of 400.0 joules/minute, calculate the time needed to vaporize the sample completely. SHOW WORK.
- 20. Why is the time needed to vaporize the sample of water significantly greater than the time needed to melt the sample?

| f   |          | 0                                                     |       | 1     |        | 1    |        |        |        |       |              | 1     |       |             |        |      |       |       |              |        |    |     |    | Γ |
|-----|----------|-------------------------------------------------------|-------|-------|--------|------|--------|--------|--------|-------|--------------|-------|-------|-------------|--------|------|-------|-------|--------------|--------|----|-----|----|---|
|     |          | 1                                                     |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| 100 |          |                                                       |       |       |        |      |        |        |        | 2     |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| F   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| Ī   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    | ľ |
| Ī   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| Ī   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    | ľ |
| F   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       | 3            |        |    |     |    |   |
| F   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       | N     |              |        |    |     |    | t |
| F   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| ŀ   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       | $\mathbf{T}$ |        |    |     |    | ſ |
| Ē   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       | +            |        |    |     |    |   |
| 0   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              | 4      |    |     |    | ł |
| F   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              | ·      | _  |     | 5  | ŀ |
| ŀ   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    | l |
| -   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| L   |          | 1 2                                                   |       | 3 4   | 5      | 6    | 7      | 8      | 9      | 10    | 11           | 12    | 13    | 14          | 15     | 16   | 17    | 18    | 19           | 20     | 21 | 2.2 | 23 | L |
|     |          |                                                       |       | , I   | 5      | 0    | ,      | 0      |        | 10    | TIM          | E (M  | inute | s) <i>H</i> | leat r | emov | ed at | a con | istan        | t rate | 21 |     | 20 |   |
| 0   |          |                                                       |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
| Que | st10     | ons                                                   |       | 1 · 1 |        |      | • 1    | . ,.   |        |       | 1            |       | 2     |             |        |      |       |       |              |        |    |     |    |   |
|     | 1.<br>ว  | Dur                                                   | ing v | vnicr | i segi | ment | S 15 K | inetio | c eno  | ergy  | aecre        | easin | gr    | same        |        |      |       |       |              |        |    |     |    | - |
| 4   | ∠.<br>3  | Dur                                                   | ing v | which | i segi | ment |        |        | tial 4 | chero | y de         | reas  | ing   | Same        |        |      |       |       |              |        |    |     |    | - |
| 2   | 5.<br>4  | During which segments is potential energy decreasing? |       |       |        |      |        |        |        |       |              |       |       |             | -      |      |       |       |              |        |    |     |    |   |
|     | <br>5    | . During which segments is one phase only present?    |       |       |        |      |        |        |        |       |              |       |       |             |        |      |       |       |              |        |    |     |    |   |
|     | 5.<br>6. | Dur                                                   | ing v | which | i segi | nent | s are  | two    | phas   | ses n | reser        | it?   |       |             |        |      |       |       |              |        |    |     |    | - |
| -   | 7.       | Atx                                                   | vhat  | time  | does   | the  | liquid | l pha  | ise fi | rst a | ppea         | r?    |       |             |        |      |       |       |              |        |    |     |    |   |
|     | Q.       | $\Delta t x$                                          | what  | time  | door   | tho  | colid  | - Pill |        | ot on | rrea<br>noon | ··    |       |             |        |      |       |       |              |        |    |     |    | - |

B. The following is a *cooling curve* showing the *release* of heat at a constant rate of 500.0 joules/minute from a

Date \_\_\_\_\_

- At what time do the particles have the highest average kinetic energy? 9.
- 10. Phase changes that occur with a release of energy are \_\_\_\_\_
- 11. \_\_\_\_\_\_\_\_ and \_\_\_\_\_\_ are exothermic phase changes.
  12. During which segment could the heat of solidification be determined? \_\_\_\_\_\_\_
- 13. During which segment could the heat of condensation be determined?
- 14. How long does it take to completely freeze the sample at its freezing point?
- 15. How long does it take to completely condense the sample at its condensation point? \_\_\_\_\_
- 16. During which segment is the substance entirely in the solid state?
- 17. During which segment is the substance entirely in the liquid state?
- 18. During which segment is the substance entirely in the gas state?
- 19. During which segment is there an equilibrium between the solid and liquid states? The temperature of the sample at this point is \_\_\_\_\_\_ Kelvin.
- 20. During which segment is there an equilibrium between the liquid and gas states? The temperature of the sample at this point is \_\_\_\_\_ Kelvin.

Name



**C.** The following is a heating curve for substance X. 15.00 grams of substance X are heated at a constant rate of 500.0 joules/min.

For answers that require calculations, express using the correct number of significant figures and include units.

- 1. The melting point is \_\_\_\_\_. The boiling point is \_\_\_\_\_.
- 2. The time at which the liquid phase first appears is \_\_\_\_\_ minutes. The time at which the gas phase first appears is \_\_\_\_\_\_ minutes.
- 3. The sample is completely in the liquid phase between \_\_\_\_\_ and \_\_\_\_\_ minutes.
- 4. Determine the heat of fusion of this substance.
- 5. Determine the heat of vaporization of this substance.
- 6. Determine the specific heat of substance X (in the liquid state).
- 7. Compare the intermolecular forces present in substance X to those present in a sample of water. *Explain completely*.