Gas Laws Practice Two

1. Examine the diagram below. GasA is in a 2.00 L flask under a pressure of .45 atm . Gas B is in a 5.00 L flask under a pressure of 1.36 atm . (These volumes include the volume of the tubing.) When the closed valve is open what is going to happen? What will be the final pressure of these two gases when they are mixed? The temperature remains constant. (Dalton's Law of Partial Pressure)

2. Hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$, has very strong rotten egg odor. Methyl salic ylate, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$, has a wintergreen odor and Benzaldehyde, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$, has a pleasant almond odor. If the vapors for these three substances were released at the same time from across a room, which odor would you smell first? Show your work and explain your answer. (Graham's Law)
3. An unknown gas diffuses 1.62 times slower than does oxygen gas. What is the molecular mass of the unknown gas? (Graham'sLaw)
4. At $137^{\circ} \mathrm{C}$ and a pressure of 3.11 atm , a 276 g sample of an unknown noble gas oc cupies 13.46 L of space. What is the gas? (Ideal GasLaw)
5. In the Dumas-bulb technique for determining the molarmass of an unknown liquid, you vaporize the sample of a liquid that boils below $100^{\circ} \mathrm{C}$ in a boiling-water bath and determine the mass of vapor required to fill the bulb. From the following data, calculate the molar mass of the unknown liquid: mass of unknown vapor, 1.012 g ; volume of bulb, $354 \mathrm{~cm}^{3}$; pressure, 742 torr, temperature, $99^{\circ} \mathrm{C}$. (Ideal GasLaw)
6. A lighter-than-air balloon is designed to rise to a height of 6 miles at which point it will be fully inflated. At that altitude the atmospheric pressure is 210 mm Hg and the temperature is $-40^{\circ} \mathrm{C}$. If the full volume of the balloon is $100,000.0 \mathrm{~L}$, how many kilograms of helium will be needed to inflate the balloon? (Ideal GasLaw)
7. A quantity of potassium chlorate is selected to yield, through heating, 75.0 mL of O_{2} when mea sured at STP. If the actual temperature is $28^{\circ} \mathrm{C}$ and the actual pressure is 0.894 atm , what volume of oxygen will result? What is the quantity of pota ssium chlorate that is used? (Ideal Gas Law and Stoic hiometry)
8. The human body needs at least $1.03 \times 10^{-2} \mathrm{~mol} \mathrm{O}_{2}$ every minute. If all of this oxygen is used for the cellular respiration reaction that breaks down glucose, how many grams of glucose does the human body consume each minute? (Stoichiometry)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

9. In the space shuttle, the CO_{2} that the crew exhales is removed from the air by a reaction within canisters of lithium hydroxide. On average, each astronaut exhales about 20.0 mol of CO_{2} daily. What volume of water will be produced when this a mount of CO_{2} reacts with an excess of LOH ? The density of water is about $1.00 \mathrm{~g} / \mathrm{mL}$. (Stoic hiometry)

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{LOH}(\mathrm{~s}) \rightarrow \mathrm{L}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

10. Carbon monoxide can be combined with hydrogen to produce methanol, $\mathrm{CH}_{3} \mathrm{OH}$. Methanol is used as an industrial solvent, as a reactant in synthesis, a nd as a clean-buming fuel for some racing cars. If you had 152.5 kg CO and $24.50 \mathrm{~kg} \mathrm{H}_{2}$, how many kilogra $\mathrm{ms} \mathrm{of}_{\mathrm{CH}}^{3} \mathrm{OH}$ could be produced? (Stoic hiometry)
11. Air-bag design depends on stoic hiometric precision:

$$
\begin{aligned}
& 2 \mathrm{NaN}_{3}(\mathrm{~s})---->2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \\
& 6 \mathrm{Na}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})---->3 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{Fe}
\end{aligned}
$$

Assume that 65.1 Lof N_{2} gas are needed to inflate an air bag to the propersize. How many grams of sodium azide, Na_{3}, must be included in the gas generant to generate this amount of N_{2} ? The density of N_{2} gas is about $0.916 \mathrm{~g} / \mathrm{L}$ under these conditions. (Stoic hiometry)

How much $\mathrm{Fe}_{2} \mathrm{O}_{3}$ must be added to the gas generant for this a mount of NaN_{3} ?
12. Engine efficiency depends on the reactant proportions:

$$
\begin{gathered}
\text { gasoline }+ \text { air -----> carbon dioxide }+ \text { water }+ \text { energy } \\
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2(\mathrm{~g})}---->16 \mathrm{CO}_{2(\mathrm{~g})}+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text { energy released: } 10,900 \mathrm{~kJ}
\end{gathered}
$$

How many liters of a ir must react with 1.000 L of isooctane in order for combustion to occur completely? At $20^{\circ} \mathrm{C}$, the density of isooc tane is $0.6916 \mathrm{~g} / \mathrm{mL}$, and the density of oxygen is $1.331 \mathrm{~g} / \mathrm{L}$. (Hint: remember to use the percentage of oxygen in air.)(Stoic hiometry)

