Density Drill

Find:

volume of 20.0 g of lead ($\mathrm{d}=11.35 \mathrm{~g} / \mathrm{mL}$)	answers \downarrow
mass of 25 mL of isopropyl alc ohol ($\mathrm{d}=0.786 \mathrm{~g} / \mathrm{mL}$)	1.76 mL
density of a metal with $\mathrm{m}=8.00 \mathrm{~g}$ and $\mathrm{V}=2.96 \mathrm{~cm}^{3}$	20. g
volume of 158 g water ($\mathrm{d}=1.00 \mathrm{~g} / \mathrm{mL}$)	$2.70 \mathrm{~g} / \mathrm{cm}^{3}$
mass of 1.00 L coke a cola ($\mathrm{d}=1.1 \mathrm{~g} / \mathrm{mL}$)	158 mL
density of gold (one cube with $\mathrm{s}=2.0 \mathrm{~cm}$ has $\mathrm{m}=154.4 \mathrm{~g}$)	$1100 \mathrm{~g}(1.1 \mathrm{~kg})$
volume of 325 mg a spirin ($\mathrm{d}=1.40 \mathrm{~g} / \mathrm{cm}^{3}$)	$19 \mathrm{~g} / \mathrm{cm}^{3}$
mass of water in a 10. gallon fish tank ($\mathrm{d}=1.00 \mathrm{~g} / \mathrm{mL}$)	$0.232 \mathrm{~cm}^{3}$
density of a liquid that occupies 8.42 mL and has a mass of 9.7 g	38 kg (83 lbs)
volume of 1.00 pound of lead ($\mathrm{d}=11.35 \mathrm{~g} / \mathrm{cm}^{3} ; 2.2 \mathrm{lbs}=1.0 \mathrm{~kg}$)	$1.2 \mathrm{~g} / \mathrm{mL}$
mass of 1 cup (8.0 fl . oz) of merc ury ($\mathrm{d}=13.5 \mathrm{~g} / \mathrm{mL}$)	40. cm^{3}
density of a gasthe occupies 0.5000 Land has a mass of 800.0 mg	3.2 kg (7.0 lbs)
mass of 1.0 L of human blood (ave. $\mathrm{d}=1.06 \mathrm{~g} / \mathrm{mL}$)	$1.600 \mathrm{~g} / \mathrm{L}$
volume of 10.0 kg of ga soline ($\mathrm{d}=0.71 \mathrm{~g} / \mathrm{mL}$)	1.1 kg
If liquid A floats on liquid B and liquid C floats on liquid B what can we conclude about the relative densities of liquid A and C ?	14 L
	Nothing, either could be denser compared to the other and they would both float on liquid B
If a solid, non-porous object floats in liquid A and sinks in liquid B what can we conclude about the relative densities of liquid A and B ?	
	We would conclude liquid A is denserthan liquid B
If two liquids with different densities are combined forming a mixture and do not chemically react with each other can we know anything about the density of the mixture compared with the density of the pure substances?	
	The mixture will have an intermediate density between the two liquids.
The density of a metal rod is $9.2 \mathrm{~g} / \mathrm{mL}$. What happens to the density if the rod is cut in half?	
	It doesn't change. It is an intensive property.

